

 1 of 8 REV: 080904

OVERVIEW
The sheer number of devices that use a serial port as a means for communicating with other electronic
equipment is staggering. In fact, for many, a serial port provides the sole mechanism of communicating
with the outside world—including thermostats, point-of-sale systems, remote monitors, barcode readers,
receipt printers, RFID transceivers, blood-pressure meters, and many more in fields as diverse as legacy
test tools to the latest in building automation. Such devices have no direct means of participating in a
larger computer network, yet new applications demand TCP/IP connectivity and Ethernet capabilities.
Often, an expensive and time-consuming redesign is not an option.

This article explores an easy and economical way to migrate stand-alone serial devices to the Ethernet by
retrofitting legacy systems that build on top of the TINI® platform using the DS80C390 or DS80C400
microcontrollers. Once a device is connected to the Ethernet, implementing TINI web services such as an
HTTP server is very straightforward.

RS-232 SERIAL PORT
The asynchronous serial communication discussed in this article is based on the RS-232-C standard that
dates back to the earliest days of recorded computer history; RS-232-C was published in 19691. Most
modern serial ports do not support all of the signals defined in the standard—and the signals that are
implemented are used in a fashion that is merely “fairly close” to that defined in the standard. We’ll
ignore the purely historical definitions and concentrate on the way RS-232 is used today.

Space and Mark
RS-232-C specifies a voltage level of +3V to +25V as “SPACE” (binary 0) and -3V to -25V as “MARK”
(binary 1). The region between -3V and +3V is the “switching region.” Many UARTs (Universal
Asynchronous Receiver Transmitters) use the more modern (in relative terms) TTL voltage levels of 0V
and +5V for 0 and 1. Special-purpose level translators, like the famous MAX-232, convert between TTL
and RS-232 levels. Since the serial ports on the DS80C390/DS80C400 are TTL-level, no level translators
are needed when interfacing to another TTL-level UART.

1 NASA has trouble deciphering computer tapes from this area, so the comparison is valid.

Application Note 704
Asynchronous Serial-to-Ethernet

Device Servers
www.maxim-ic.com

AN704: Asynchronous Serial-to-Ethernet Device Servers

 2 of 8

DCE and DTE
DCE (data communications equipment) and DTE (data terminal equipment) are the two endpoints of a
communications channel. The main difference is the serial connector pinout (a so-called null-modem can
be used to convert between the two).

Table 1 shows the signals on a DB-9 DTE serial connector and the corresponding signals on another DTE
when using a null-modem.

Table 1. DB-9 DTE SERIAL CONNECTOR SIGNALS

DTE PIN SIGNAL NAME NULL-MODEM
1 CD (Carrier Detect) 4 (DTR)
2 RD (Receive Data) 3 (TD)
3 TD (Transmit Data) 2 (RD)
4 DTR (Data Terminal Ready) 6 (DSR) and 1 (CD)
5 Common (Signal Ground) 5 (Common)
6 DSR (Data Set Ready) 4 (DTR)
7 RTS (Request To Send) 8 (CTS)
8 CTS (Clear To Send) 7 (RTS)
9 RI (Ring Indicator) N/C

Flow Control
Serial communication can be realized by sending on one pin (TD) and listening on another (RD).
However, when two devices that communicate over RD, TD transmit at will, one might overrun the other,
resulting in data loss. There are two ways flow control is commonly implemented:

��XON/XOFF (often loosely termed software flow control)
��RTS/CTS (often loosely termed hardware flow control)

The XON/XOFF flow control scheme transmits in-band characters that cause the other side to pause
(XOFF, 13h) and resume (XON, 11h) transmission. The XON and XOFF characters must be escaped in
software by the sender and unwrapped by the receiver if they occur in a binary data stream.

RTS/CTS uses extra signaling lines. RTS (request to send) is asserted by the sender. The receiver
responds with CTS (clear to send) when it is ready to receive data and clears CTS when its receive buffer
is full.

Some devices support flow control, some don’t. The defaults are, therefore, usually set to “no flow
control,” which should be overridden if a device is known to implement flow control.

Speed, Data Bits, Stop Bits, and Parity
Other parameters that have to be set correctly in order for communications to be successful are, of course,
the transmission speed (bit rate), the number of data and stop bits, and the type of parity checking (if
any). Most new devices use a setting of “8N1,” which means 8 data bits, no parity, and 1 stop bit.
However, legacy systems are known to use the full range of possibilities, so the correct setting actually
might not be that trivial.

AN704: Asynchronous Serial-to-Ethernet Device Servers

 3 of 8

TINI and Networking
TINI (Tiny InterNet Interfaces) is a technology platform developed by Dallas Semiconductor to allow
rapid development on the DS80C390 and DS80C400 microcontrollers. Specifically, TINI encompasses a
chipset definition, and an embedded operating system integrated with a highly optimized Java™ runtime
environment. Using Java, programmers benefit from powerful features not commonly found in embedded
development: multithreading, garbage collection, inheritance, virtualization, cross-platform capabilities,
powerful networking support, and, last but not least, a multitude of free development tools. TINI users are
usually shielded from assembly language coding. However, native language subroutines are supported
and encouraged to optimize speed-critical paths or low-level hardware access (the TINI operating system
is written in native code, resulting in serial I/O throughput not significantly different from modern PCs).

In addition to full support of the java.net package, the TINI Java runtime also contains an implementation
of the javax.comm subsystem. Since both TCP/IP and the serial ports are effortlessly accessible from
Java, the TINI system easily lends itself to implementing Serial-to-Ethernet bridges.

The TINIm390 verification module on an E10 socket (also called DSTINIS-005) used in the following
examples is the hardware portion of the DS80C390 TINI development platform (the TINIm400 uses the
DS80C400). In addition to SRAM, flash memory, Ethernet, CAN-bus, 1-Wire®, etc., the system also has
four serial ports; two of the UARTs are internal to the DS80C390 (called serial0 and serial1). Two ports
are external (using a 16550 build option). It is important to note that both serial connectors on the E10
socket are wired to serial0 and just differ in DTE/DCE pin assignment.

The TINI environment is documented in great detail in The TINI Specification and Developer's Guide
(Addison-Welsey, 2001). A PDF copy can be downloaded from www.maxim-ic.com/TINIguide.

Examples
We’ll start with two concrete applications and then present a short excerpt from a generic Serial-to-
Ethernet program that can be modified to suit almost any particular application. The examples are built
using the TINIm390/400 verification modules.

TINI

Serial EthernetSerial Devices

Server
or

Client
Network

The TINI verification module can be used as “black box” to connect multiple serial devices to the
Ethernet. Depending on the needs of the end equipment, the TINI can either pass the data straight through
or parse, interpret and modify the data stream.

Note that although you can run the examples from the slush developer’s shell on the TINIm390/400, a
more polished application would reside in flash, be self-starting in the event of a power loss, and use
other TINI construction techniques to make the finished product virtually indestructible.

Some basic networking knowledge and programming experience are required to be able to modify the
examples. Working sample code is also downloadable from the Dallas ftp site.

http://www.maxim-ic.com/TINIguide

AN704: Asynchronous Serial-to-Ethernet Device Servers

 4 of 8

Virtual Modems
The first example, a “Virtual Modem,”2 uses the TINIm390/400 to replace a physical modem and
telephone line with TCP/IP connectivity. Assume a legacy device like a factory “machine status monitor”
that uses a modem to dial into a central server several times a day to report machine status, load and
efficiency data. To eliminate the need for an ever-growing modem bank on the server side and to be able
to use an existing LAN instead of phone lines to the equipment, one could

��rewrite the server software to be TCP/IP based and
��use TINI virtual modems to replace the original modems at each machine

The machine status monitors, however, don’t have to be modified since the virtual modem behaves like a
real modem as far as the end equipment is concerned!

Virtual modems can of course also be used in pairs instead of the configuration described above. When
using two virtual modems, no server software needs to be changed at all and the TINI modules are a drop-
in replacement for existing modems.

Behind the scenes, a virtual modem establishes a TCP connection whenever it receives the “ATD”
modem dial command. An “ATH” disconnect command closes the TCP connection. The software also
implements a number of other classic AT modem commands and is recognized as a true modem by
Microsoft® Windows® networking, for example. In addition, a virtual modem listens on a TCP port itself
and can answer incoming “calls” that are signaled by a “RING” to the end equipment.

The following code fragments show how to initialize a serial port on the TINIm390:

 public static void main(String args[])
 {
 TINIOS.setSerialBootMessagesState(false);
 TINIOS.setDebugMessagesState(false);
 TINIOS.setConsoleOutputEnabled(false);

 System.out.println("Connecting to serial0 at 9600bps, "
 "listening on TCP port 8001");

 try {
 CommPortIdentifier portId = CommPortIdentifier.getPortIdentifier("serial0");
 SerialPort port = (SerialPort) portId.open("VModemTINI", 10000);

 TINIOS.setRTSCTSFlowControlEnable(1, false);
 TINIOS.setRTSCTSFlowControlEnable(0, true);

 TCPSerialVirtualModem modem = new TCPSerialVirtualModem(port,
 /* Comm speed */ 9600, /*TCP Port */ 8001);
 modem.processInput();
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.toString());
 }
 }

2 Refer to Application Note 196: Designing a Virtual Modem Using TINI.

AN704: Asynchronous Serial-to-Ethernet Device Servers

 5 of 8

The code first disables all TINI OS debug output, standard practice on the TINI. After getting a port
identifier, the port is then opened (the second parameter tells open how long to wait if the port is currently
in use by another application). Next, the state of the hardware flow control is set. Since the TINIm390
only has one set of RTS/CTS lines for serial ports 0 and 1, a program should always disable flow control
on the other port before enabling it on the desired port. Next, a Java virtual modem is instantiated.

The virtual modem class consists of an AT command interpreter (not shown here, although by far the
largest part of the example) and networking code. The following code sets the serial port bit rate, data and
stop bits as well as parity and shows how easy it is to handle inbound connections:

 /** Creates a new VirtualModem connected to a serial port on
 * one end and a TCP port on the data side.
 * serial -- the serial port this VirtualModem talks to.
 * speed -- the speed the serial port should be set to.
 * tcpport -- the TCP port this VirtualModem listens on.
 * throws IOException when there's a problem with the serial or TCP port.
 */
 public TCPSerialVirtualModem(SerialPort serial, int speed, int tcpport)
 throws IOException
 {
 super(serial);

 try {
 serial.setSerialPortParams(speed, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
 }
 catch (UnsupportedCommOperationException e) {
 throw new IOException();
 }

 ...

 serverSock = new ServerSocket(tcpport, 1); // backlog of one
 listenThread = new listenInbound();
 listenThread.start();
 }

Finally, the following excerpt of the listenThread() accepts an incoming connection request:

 public void run()
 {
 int rc;
 Socket s;

 while (running) {
 s = null; // No incoming connection request
 try {
 answered = false;
 s = serverSock.accept();

 // Discard incoming connection if already connected
 if (connected)
 throw new IOException();

 sock = s; // for answer()
 ...

AN704: Asynchronous Serial-to-Ethernet Device Servers

 6 of 8

UPS Monitor
The second example connects a TINIm390/400 to a serial port of an uninterruptible power supply. The
software implements the Network UPS Tools protocol3, allowing a variety of clients on a variety of
platforms to monitor the UPS state and health (this project originated from the need to monitor an
existing UPS from a new Macintosh computer without any serial ports).

There are two basic kinds of UPS devices: So-called “smart” ones and simple (or “dumb”) ones. A simple
UPS signals its state on several serial pins, it does not actually send any ASCII data. Due to the fact that
there are not terribly many serial pins, it can only report a very limited set of information, for example:

SIGNAL MEANING
RTS (from UPS) Low Battery

TD (from UPS) On Battery

CTS (to UPS) Kill UPS Power

The javax.comm.notifyOn…() methods can be used in Java to easily implement code that reacts to
status changes, for example:

 ...
 // Listen for DTR changes
 try {
 port.addEventListener(this);
 } catch (TooManyListenersException e) {
 ...
 }
 port.notifyOnDSR(true);
 ...

 public void serialEvent(SerialPortEvent ev)
 {
 try {
 if (ev.getEventType() == SerialPortEvent.DSR)
 ...
 } catch ...
 ...
 }

A smart UPS is more interesting, since it implements a serial protocol and can return values like the
battery charge percentage or the temperature. Protocols are vastly different between different vendors
and, often enough, undocumented.

3 See http://www.networkupstools.org/

http://www.networkupstools.org

AN704: Asynchronous Serial-to-Ethernet Device Servers

 7 of 8

The following code shows how to receive UDP requests and send out UPS status information over UDP.

 // Listen to incoming UDP requests
 private class listenUDPThread extends Thread
 {
 private DatagramSocket sock;
 private byte[] buffer;
 private DatagramPacket dp;

 public listenUDPThread(DatagramSocket s)
 {
 sock = s;
 buffer = new byte[BUF_SIZE];
 dp = new DatagramPacket(buffer, buffer.length);
 }

 public void run()
 {
 while (running) {
 try {
 sock.receive(dp);
 byte[] data = parseCommand(buffer, dp.getLength());
 sock.send(new DatagramPacket(data, data.length,
 dp.getAddress(), dp.getPort()));
 }
 catch (Exception e) {
 }
 }
 try {
 sock.close();
 }
 catch (Exception e) {
 }
 }
 }

Due to the powerful networking support built into Java, this example is almost self-explanatory. The code
in the while() loop waits until it receives a UDP request, parses it and sends out an answer to the
originator of the request (using getAddress() on the incoming packet).

AN704: Asynchronous Serial-to-Ethernet Device Servers

 8 of 8

Generic Serial-to-Ethernet Application
A complete Serial-to-Ethernet example is beyond the scope of this article. (A complete example is shown
and explained in the The TINI Specification and Developer's Guide.) However, the following code
fragment shows how to efficiently use multithreading to transfer data between the serial and networking
portions of a Serial-to-Ethernet bridge. The serial and TCP ports are abstracted as Input/OutputStreams
dataIn and dataOut, so this layer of the code does not actually need to know anything about the network
at all and could also bridge data between the CAN and 1-Wire, for example.

 public GenericBridge()
 {
 ...
 running = true;
 dcThread = new dataCopy();
 dcThread.start();
 }

 // Thread that copies everything from dataIn to dataOut
 private class dataCopy extends Thread
 {
 public void run()
 {
 int r = 0;
 while (running && r >= 0) {
 try {
 synchronized (threadLock) {
 r = dataIn.read(dataBuffer);
 if (r > 0)
 dataOut.write(dataBuffer, 0, r);
 }
 }
 catch (Exception e) {
 r = -1;
 ... // Handle error
 }
 }
 }
 }
 }

CONCLUSION
Many legacy devices only support asynchronous serial communications, yet current applications demand
Ethernet connectivity and TCP/IP networking. Using the powerful Java runtime and the TINI technology
on the DS80C390 and DS80C400 microcontrollers, developing a Serial-to-Ethernet converter is easy and
can be done in a matter of hours.

TINI and 1-Wire are registered trademarks of Dallas Semiconductor.
Java is a trademark of Sun Microsystems.
Microsoft and Windows are registered trademarks of Microsoft Corp.

